Proceed to GeoCommunity Home Page


SpatialNewsGIS Data DepotGeoImaging ChannelGIS and MappingSoftwareGIS JobsGeoBids-RFPsGeoCommunity MarketplaceGIS Event Listings
HomeLoginAccountsAboutContactAdvertiseSearchFAQsForumsCartFree Newsletter

Sponsored by:


TOPICS
Today's News

Submit News

Feature Articles

Product Reviews

Education

News Affiliates

Discussions

Newsletters

Email Lists

Polls

Editor's Corner


SpatialNews Daily Newswire!
Subscribe now!

Latest Industry Headlines
SiteVision GIS Partnership With City of Roanoke VA Goes Live
Garmin® Introduces Delta™ Upland Remote Trainer with Beeper
Caliper Offers Updated Chile Data for Use with Maptitude 2013
Southampton’s Go! Rhinos Trail Mapped by Ordnance Survey
New Approach to Measuring Coral Growth Offers Valuable Tool for Reef Managers
Topo ly - Tailor-Fit for Companies' Online Mapping Needs

Latest GeoBids-RFPs
Nautical Charts*Poland
Software & Telemetry GPS
Spatial Data Management-DC
Geospatial and Mapping-DC
Next-Gen 911-MO

Recent Job Opportunities
Planner/GIS Specialist
Team Leader- Grape Supply Systems
Geospatial Developer

Recent Discussions
Raster images
cartographic symbology
Telephone Exchange areas in Europe
Problem showcasing Vector map on Windows CE device
Base map
Countdown | Overview | Data Products | EarthKAM | Benefits |Antenna | Mast | Objectives

Kamchatka Peninsula, Russia 3-D Perspective with Landsat Overlay


This three-dimensional perspective view, looking up the Tigil River, shows the western side of the volcanically active Kamchatka Peninsula, Russia. The image shows that the Tigil River has eroded down from a higher and differing landscape and now flows through, rather than around the large green-colored bedrock ridge in the foreground. The older surface was likely composed of volcanic ash and debris from eruptions of nearby volcanoes. The green tones indicate that denser vegetation grows on south facing sunlit slopes at the northern latitudes. High resolution SRTM elevation data will be used by geologists to study how rivers shape the landscape, and by ecologists to study the influence of topography on ecosystems. This image shows how data collected by the Shuttle Radar Topography Mission (SRTM) can be used to enhance other satellite images. Color and natural shading are provided by a Landsat 7 image acquired on January 31, 2000. Terrain perspective and shading were derived from SRTM elevation data acquired on February 12, 2000. Topography is exaggerated by about six times vertically. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data

Source: NASA

Return to SpatialNews SRTM Main Page

Sponsored by:

For information
regarding
advertising rates
Click Here!

Copyright© 1995-2012 MindSites Group / Privacy Policy

GeoCommunity™, Wireless Developer Network™, GIS Data Depot®, and Spatial News™
including all logos and other service marks
are registered trademarks and trade communities of
MindSites Group